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Abstract: Within the framework of the lumped model, unsteady heat conduction takes place in a quasi-isothermal 
body whose mean temperature changes with time only. Fundamentally, the lumped model subscribes to the notion 
that the internal conductive resistance in a solid body is negligible with respect to the external convective resistance 
at the solid/fluid interface. The short technical paper seeks to establish an alternate basis for the utilization of the 
lumped model embodying heat interaction by coupled natural convection and radiation between a simple solid body 
and a quiescent gas. The governing lumped equation is highly nonlinear and needs to be solved by numerical 
methods, like the Runge-Kutta-Fehlberg algorithm. Utilizing regression analysis for the total heat transfer 
coefficient varying with the temperature excess, nonlinear lumped equation is conveniently transformed into a 
milder nonlinear Bernoulli equation. Despite that the latter equation is still nonlinear, it admits an exact analytic 
solution. The step-by-step computational procedure is developed in a case study centered in a horizontal solid 
cylinder cooled by air. 
  
Keywords: natural convection, radiation, nonlinear lumped model, lumped Biot number criterion, Bernoulli equation. 

 

Nomenclature  
 
A   surface area, m2 

Bil  lumped Biot number, 







A
V

k
h

s

T ,     

             dimensionless  
cv  specific heat capacity at constant 
             volume, J/kg K  
cp  specific heat capacity at constant 
             pressure, J/kg K 
D  diameter of long cylinder, m 
g  gravitational acceleration, m/s2 
hC  natural convection coefficient, W/m2 K 
hR     radiation coefficient, W/m2 K 
hT  total heat transfer coefficient, W/m2 K 
k  thermal conductivity, W/m K 

n  exponent in Bernoulli equation (14)  

NuD       mean Nusselt number,
g

C

k
Dh

,  

             dimensionless 
n  exponent in Bernoulli equation (14) 
p  coefficient in Bernoulli equation (14) 

Pr  Prandtl number, ,
g

p

k
cµ

 dimensionless 

q  coefficient in Bernoulli equation (14) 
R  radius of long cylinder, m 
RaD  standard Rayleigh number, 

 
να
βg

( T  T gs − ) D3, dimensionless  

RaD,i  initial Rayleigh number for gas, 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Antonio Campo, Miguel Cortina

E-ISSN: 2224-3461 174 Volume 12, 2017



 
 

   

 
T

g
gνα

( T  T gi − ) D3, dimensionless 

t   time, s 
T   temperature, K 
Ti   initial temperature, K 
Tf   film temperature, K 
Tg   gas temperature, K 
Ts   surface temperature, K 
V   volume, m3 

Greek symbols  
α  thermal diffusivity, m2/s 
β  coefficient of volumetric thermal   
             expansion, 1/K 
ΔT temperature excess, T – Tg 
ε  total surface emissivity, dimensionless 
μ  dynamic viscosity, N s/m2 
ν  kinematic viscosity, m2/s 
ρ  density, kg/m3 
σ  Stefan-Boltzmann constant, W/m2 K4 
Subscripts 
f  refers to film 
g  refers to gas 
s   refers to solid 
 
1 Introduction  
When a solid body at a given temperature is 
immersed in an extensive fluid at a different 
temperature, heat conduction takes place inside 
the body and heat exchange between the body 
surface and the fluid usually occurs by convection 
and/or radiation (Mills [1]).   
 There are two resistances associated with 
the body/fluid ensemble: (1) an internal 
conductive resistance inside the body and (2) an 
external convective resistance or an external 
radiative resistance at the body/fluid interface. 
Whenever the external convective resistance 
dominates the internal conductive resistance, this 
translates into a small temperature difference 
between the center and the surface of the body and 
a large temperature difference between the body 
surface and the surrounding fluid.  Putting this 
statement in perspective, it connotes that during 
the cooling or heating period, the solid body can 
be considered as a "lump" with nearly uniform 
temperature at any instant of time.  In other words, 
unsteady heat conduction takes place in a spatially 

quasi-isothermal body so that the mean 
temperature changes only with time. This physical 
rationale sets the groundwork for the simple 
lumped model instead of the complex differential 
model [1]. Regardless whether the solid body is 
regular or irregular, the lumped model is oversight 
by the lumped Biot number Bil  < 0.1, where h is 
the convection coefficient, ks is the thermal 
conductivity, V and A are the volume and surface 
area of the body. 
 Setting aside forced convection, if natural 
convection cools or heats a solid body, the 
nonlinear mode of heat transfer is vulnerable to 
instantaneous changes in the body temperature. 
Therefore, the corresponding natural convective 
coefficient hC does not stay constant, but varies 
with the mean temperature, which in turn varies 
with time. In addition, if the environment is a gas 
or a vapor, the magnitudes of natural convection 
and radiation may be comparable. In view of this, 
the governing lumped equation turns highly 
nonlinear necessitating numerical integration for 
its solution. 
 Focusing on combined heat transfer 
mechanisms, the total heat transfer coefficient hT 
corresponds to the natural convection coefficient 
hC plus the radiation coefficient hR. In this work, 
linear regression analysis was applied to the 
tabulated total heat transfer coefficient hT 
associated with the highly nonlinear lumped 
equation.  As a direct result, the highly nonlinear 
lumped equation is degraded to a mildly nonlinear 
Bernoulli equation, giving way to an approximate 
analytic solution. As a case study, the lumped 
equation for coupled natural convection and 
radiation in the cooling of a horizontal solid 
cylinder will be solved in two ways: 1) by the 
numerical procedure using the Runge-Kutta-
Fehlberg algorithm and 2) by the new 
approximate analytical procedure. 
 
2 Lumped Equation for Coupled Natural  
   Convection and Radiation  
As sketched in Figure 1, a hot solid body at a 
uniform temperature Ti is immersed in a quiescent 
cold gas at a different temperature Tg. In general, 
the governing lumped equation for coupled 
natural convection and radiation along with the 
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initial condition are 
 

( ) ig

gCsvs

T = (0)T         TTA

)T  (T Ah  = 
dt
dT V c      

,44

,

−−

−−

σε

ρ
                (1a) 

 
This highly nonlinear equation may be rewritten 
in an alternate manner as 

igR

gCsvs

T = (0)T         )T  (T Ah

)T  (T Ah  = 
dt
dT V c    

,

,

−−

−−ρ
               (1b)                                      

where hR stands for the radiation coefficient 
 

       ℎ𝑅𝑅 = 𝜀𝜀𝜀𝜀 �𝑇𝑇4− 𝑇𝑇𝑔𝑔4�
𝑇𝑇− 𝑇𝑇𝑔𝑔

                                (2)                                          
 
and T is in degrees Kelvin.  
 

 
Figure 1. Horizontal solid cylinder immersed in a 
quiescent fluid  

 
To deal with coupled natural convection 

and radiation, the lumped Biot number criterion 
  

       1.0<





=

A
V

k
hBi

s

C
l                             (3a)             

 
needs to be amplified to read 
 

     1.0<





=

A
V

k
hBi

s

T
l                                  (3b) 

 
where the total heat transfer coefficient hT equals 
the natural convection coefficient hC plus the 

radiation coefficient hR. That is, 
 
       ℎ𝑇𝑇 = ℎ𝐶𝐶 + ℎ𝑅𝑅                                               (4) 

 
Among the three simple solid bodies 

mostly used in engineering applications, the 
large plate, the long cylinder and the sphere, we 
chose the intermediate long cylinder whose 

volume–to–area ratio 
A
V

 = 
4
D

. Accounting for 

this geometric characteristic, eq. (1a) reduces to 

( ) ig

gCsvs

T = (0)T         TT

)T  (T h  = 
dt
dT D c      

,4

4

44

,

−−

−−

σε

ρ

            (5a)                                  

 
and its companion eq. (1b) reduces to 
 

igR

gCsvs

T = (0)T       )T  (T h

)T  (Th   = 
dt
dT D c  

, 4

4,

−−

−−ρ
      (5b) 

in terms of the radiation coefficient hR given by 
eq. (2).  In both equations (5a) and (5b), the 
enlarged lumped Bi number criterion becomes  
                           

 
s

T
l k

RhBi =  < 0.2 

 
where R is the radius. For laminar natural 
convection around a horizontal long cylinder, the 
mean Nusselt number correlation developed by 
Churchill and Chu [2] is 
 

(Pr)f
Ra 80.5 +  = Nu D

D

4/1

136.0 for RaD < 109   (6) 

 
where the standard Rayleigh number is  
 

RaD = 
να
βg

( T  T g− ) D3 
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because 𝛽𝛽 = 1

𝑇𝑇𝑔𝑔
 in K-1, and f (Pr) is the so–

called “universal” Prandtl number function: 
         



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
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


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


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  

Pr
90. + 1  = (Pr)f     

9/16 4/9
55

          (7b) 

 
Here, the intervening thermophysical properties 
of the gas are evaluated at the film temperature 

Tf = 𝑇𝑇𝑠𝑠  + 𝑇𝑇𝑔𝑔
2

. As stated by Holman [3], typical 
uncertainties in the determination of the natural 
convective coefficient hC from most correlation 
equations, like eq. (6), lie within %10±  to 

%20±  margin. 
Isolating the natural convective 

coefficient hC for gases in eq. (6) knowing that Pr 
= 0.71 and  f (Pr) = 1.322, the magnitude of hC is 
expressed by the two–term expression in terms of 
primitive quantities: 
 

+=
D
k

h g
C 36.0  

( )  T  T
T

g
(Pr)fD
k

  g
g

1/4

/4
g









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


−





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


 4/1
1

39.0
αν

         (8)                                                        

 
Essentially here, hC entails to a nonlinear single-
value function of the temperature excess T − Tg. 

For the case of cooling, eq. (8) turns over 
the largest hC = hC,max happening at the initial time  
t = 0 where the temperature T = Ti. 
Correspondingly, hC,max is written as 

 

ℎ𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 = +
D
kg36.0  
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 4/1
1
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     (8a)    

 
in the closed interval [Tg, Ti], because Ti > Tg. 
Similarly, from eq. (2) in the case of cooling the 
largest radiation coefficient hR = hR,max is 
 

ℎ𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚 =
𝜖𝜖𝜀𝜀�𝑇𝑇𝑖𝑖4 −  𝑇𝑇𝑔𝑔4� 

𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑔𝑔
 

                                                                 (9) 
In consequence, the lumped Biot number 
criterion for cooling a long cylinder is re-stated as 
 

        
s

T
l k

Rh
Bi max,=  < 0.2                         (10)                                                                                      

where ℎ𝑇𝑇,𝑚𝑚𝑚𝑚𝑚𝑚 = ℎ𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 +  ℎ𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚 .   

 
3 Case Study 
Consider a long cylinder made of aluminum 
with diameter D = 0.1 m which is placed in a 
horizontal position. The long cylinder having 
initial temperature Ti = 700 K is immersed in 
stagnant air at a temperature Tg = 300 K. The 
objective is to determine the variation of the 
cylinder temperature with time under the 
influence of natural convection with radiation. 
  The thermophysical properties of 
aluminum at the film temperature Tf = 500 K are 
taken from References [1,3]:  density ρs = 8933 
kg/m3, specific heat capacity at constant volume 
cv,s = 412 J/kgK, thermal conductivity ks = 236 
W/mK, and total surface emissivity ε = 0.80.  

As already stated, the nonlinear lumped 
equation for natural convection coupled with 
radiation is eq. (5), 

( ) ig

gCsvs

T = (0)T         TT

)T  (T h  = 
dt
dT D c      

,4

4

44

,

−−

−−

σε

ρ
  

                                                               (5) 

Further, evaluating the thermophysical 
properties of air at the film temperature Tf = 500 
K [1,3], the proper expression for  ℎ𝐶𝐶   turns out 
to be 

 ℎ𝐶𝐶 = 0.014
𝐷𝐷

+ 0.983 (𝑇𝑇−𝑇𝑇𝑔𝑔)1/4

𝐷𝐷1/4        (11) 
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which is nonlinear. For the radiation part, the 
Stefan-Boltzmann constant is 𝜀𝜀 = 5.67 x 10--8 
W/m2K4.   
 
4 Presentation of Results 
Eq. (5) was solved numerically using RKF45, a 
MATLAB library that implements the Runge-
Kutta-Fehlberg algorithm [4]. Figure 2 shows 
the monotonic decreasing variation of 
temperature with time for the horizontal cylinder 
revealing that thermal equilibrium is reached at a 
time of 40,000 s. Additionally, Figure 3 contains 
the temperature-time variations for natural  
 

 
 
Figure 2. Temperature-time variation for coupled 
natural convection and radiation 
 

 
Figure 3.  Comparison of the temperature-time 
variations for 1) natural convection, 2) radiation and 
3) natural convection plus radiation 
 
 

convection, radiation and natural convection 
combined with radiation, all within the umbrella 
of cooling. 

 

 
Figure 4. Variations of 1) the natural convection 
coefficient hC, 2) the radiation coefficient hR and 3) 
the total heat transfer coefficient hT with the 
temperature excess ΔT 

           In Figure 4, the natural convection 
coefficient hC given in eq. (11), the radiation 
coefficient hR given in eq. (3) and the resultant 
total heat transfer coefficient hT = hC + hR  are 
plotted on the ordinate and the temperature excess 
ΔT on the abscissa.  Pausing here for a moment, it 
is observable in the figure that the uppermost 
curve for hT varying with ΔT has a quasi linear 
shape. This behavior is exploited right away to 
perform a linear regression analysis of hT versus 
ΔT. The MATLAB function polyfit [4] 
subsequently delivers the straight line 

ℎ𝑇𝑇 = 3.9617 +  0.064�𝑇𝑇 − 𝑇𝑇𝑔𝑔�            (12) 

with a high correlation coefficient R2 = 0.979. 
          Next, substituting eq. (12) into eq. (5) 
provides a degraded lumped equation 
 

𝜌𝜌𝑠𝑠𝑐𝑐𝑣𝑣,𝑠𝑠 
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

=  −  
3.9617
𝐷𝐷

�𝑇𝑇 −  𝑇𝑇𝑔𝑔� 
 

           −
0.0639
𝐷𝐷

 (𝑇𝑇 −  𝑇𝑇𝑔𝑔)2                                                 

                                                                  (13) 
which is still nonlinear because of the term 
(𝑇𝑇 −  𝑇𝑇𝑔𝑔)2. 

y = 0.0639x + 3.9617
R² = 0.979
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Figure 5.  Comparison between the numerical solution 
T vs t of the highly nonlinear lumped equation (5) and 
the approximate analytical solution of the equivalent 
mildly nonlinear Bernoulli equation, eq. (15) 
 

Within the classification of ordinary 
differential equations,  

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑚𝑚

+ 𝑝𝑝𝑑𝑑 = 𝑞𝑞𝑑𝑑 𝑛𝑛 ,        𝑛𝑛 ≠ 0, 1                       (14) 
 
is named Bernoulli equation (Polyanin and 
Zaitsev [5]) where p and q are constant 
coefficients. Hence, the exact analytic solution 
of eq. (13) taken from [5] corresponds to 

( )  ptq
q
pTTT= tT gig

1
1 )(exp)(

−
−

















−−+−+

       
                                                                (15)  
where the constants p and q are taken from the 
ratios 
 

  𝑝𝑝 = −
0.2556
𝜌𝜌𝑠𝑠 𝑐𝑐𝑣𝑣,𝑠𝑠 𝐷𝐷

 

and 

  𝑞𝑞 = −
1.5847
𝜌𝜌𝑠𝑠 𝑐𝑐𝑣𝑣,𝑠𝑠 𝐷𝐷

 

In consequence, eq. (15) supplies the 
approximate analytic temperature–time variation 
in the horizontal long cylinder, which is 
displayed in Figure 5 along with the 
temperature–time lumped variation obtained 
numerically from solving the highly nonlinear 
equation (5). Here, it is recognized that the 
approximate analytical solution of the equivalent 
Bernoulli equation is more conservative than the 
numerical solution of the original nonlinear 
equation using the Runge-Kutta-Fehlberg 
algorithm. From a qualitative standpoint, the 
largest temperature discrepancy between the two 
approximate solutions exposes a difference of 
around 15-20 K in the mid temperature region. 
Without question, this disagreement is 
considered small for engineering applications.  
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